
Quality standards

Edition: BP 2025 (Ph. Eur. 11.6 update)

Lactobionic Acid

General Notices

(Ph. Eur. monograph 1647)

C₁₂H₂₂O₁₂ (acid form) 358.3 96-82-2

 $C_{12}H_{20}O_{11}$ (δ -lactone) 340.3 5965-65-1

Ph Eur

DEFINITION

Mixture in variable proportions of 4-O- β -D-galactopyranosyl-D-gluconic acid and 4-O- β -D-galactopyranosyl-D-glucono-1,5-lactone.

Content

98.0 per cent to 102.0 per cent (anhydrous substance).

CHARACTERS

Appearance

White or almost white powder.

Solubility

Freely soluble in water, slightly soluble in glacial acetic acid, in anhydrous ethanol and in methanol.

https://nhathuocngocanh.com/bp

mp

About 125 °C with decomposition.

IDENTIFICATION

A. Infrared absorption spectrophotometry (2.2.24).

Comparison <u>lactobionic acid CRS</u>.

If the spectra obtained show differences, dissolve the substance to be examined and the reference substance separately in *water R*, dry at 105 °C and record new spectra using the residues.

B. Thin-layer chromatography (2.2.27).

Test solution Dissolve 10 mg of the substance to be examined in <u>water R</u> and dilute to 1 mL with the same solvent.

Reference solution Dissolve 10 mg of <u>lactobionic acid CRS</u> in <u>water R</u> and dilute to 1 mL with the same solvent.

Plate <u>TLC silica gel plate R</u>.

Mobile phase concentrated ammonia R1, ethyl acetate R, water R, methanol R (2:2:2:4 V/V/V/).

Application 5 µL.

Development Over 3/4 of the plate.

Detection Spray 3 times with ammonium molybdate solution R6 and heat in an oven at 110 °C for 15 min.

Results The principal spot in the chromatogram obtained with the test solution is similar in position and colour to the principal spot in the chromatogram obtained with the reference solution.

TESTS

Appearance of solution

The solution is clear (2.2.1) and not more intensely coloured than reference solution Y_5 (2.2.2, Method II).

Dissolve 3.0 g in 25 mL of water R.

Specific optical rotation (2.2.7)

+ 23.0 to + 29.0 (anhydrous substance).

Dissolve 1.0 g in 80 mL of water R and dilute to 100.0 mL with the same solvent. Allow to stand for 24 h.

Reducing sugars

Maximum 0.2 per cent, calculated as glucose.

Dissolve 5.0 g in 25 mL of <u>water R</u> with the aid of gentle heat. Cool and add 20 mL of <u>cupri-citric solution R</u> and a few glass beads. Heat so that boiling begins after 4 min and maintain boiling for 3 min. Cool rapidly

https://nhathuocngocanh.com/bp

and add 100 mL of a 2.4 per cent *V/V* solution of *glacial acetic acid R* and 20.0 mL of <u>0.025 M iodine</u>. With continuous shaking, add 25 mL of a mixture of 6 volumes of <u>hydrochloric acid R</u> and 94 volumes of <u>water R</u> and, when the precipitate has dissolved, titrate the excess of iodine with <u>0.05 M sodium thiosulfate</u> using 1 mL of <u>starch solution R</u>, added towards the end of the titration, as indicator. Not less than 12.8 mL of <u>0.05 M sodium thiosulfate</u> is required.

Water (2.5.12)

Maximum 5.0 per cent, determined on 0.50 g.

Use a mixture of 1 volume of *formamide R* and 2 volumes of *methanol R* as solvent.

Total ash (2.4.16)

Maximum 0.2 per cent.

ASSAY

Dissolve 0.350 g in 50 mL of <u>carbon dioxide-free water R</u>, previously heated to 30 °C. Immediately titrate with <u>0.1 M sodium hydroxide</u> and determine the 2 equivalence points potentiometrically (<u>2.2.20</u>).

The first equivalence point (V_1) corresponds to the acid form of lactobionic acid and the second equivalence point $(V_2 - V_1)$ corresponds to the δ -lactone form.

1 mL of <u>0.1 M sodium hydroxide</u> is equivalent to 35.83 mg of C₁₂H₂₂O₁₂.

1 mL of 0.1 M sodium hydroxide is equivalent to 34.03 mg of $C_{12}H_{20}O_{11}$.

The sum of the 2 results is expressed as a percentage content of lactobionic acid.

Ph Eur