Quality standards

Edition: BP 2025 (Ph. Eur. 11.6 update)

Dantron

General Notices

C₁₄H₈O₄ 240.2 117-10-2

Action and use

Anthraquinone stimulant laxative.

Preparation

Co-danthrusate Capsules

DEFINITION

Dantron is mainly 1,8-dihydroxyanthraquinone. It contains not less than 98.0% and not more than 102.0% of total phenols, calculated as $C_{14}H_8O_4$ and with reference to the dried substance.

CHARACTERISTICS

An orange, crystalline powder.

Practically insoluble in <u>water</u>, slightly soluble in <u>ether</u>, very slightly soluble in <u>ethanol (96%)</u>. It dissolves in solutions of alkali hydroxides.

IDENTIFICATION

- A. The infrared absorption spectrum, Appendix II A, is concordant with the reference spectrum of dantron (RS 083).
- B. The <u>light absorption</u>, <u>Appendix II B</u>, in the range 230 to 350 nm of a 0.001% w/v solution in <u>dichloromethane</u> exhibits maxima at 255 nm and 285 nm and a less well-defined maximum at 275 nm. The <u>absorbance</u> at the maximum at 255 nm is about 0.82 and at the maximum at 285 nm is about 0.48, each calculated with reference to the dried substance.
- C. Dissolve 5 mg in 5 mL of 1_M sodium hydroxide. A clear red solution is produced immediately.

TESTS

Mercury

To 0.50 g in a Kjeldahl flask add 2.5 mL of <u>nitric acid</u> and allow to stand until the initial vigorous reaction has subsided. Add 2.5 mL of <u>sulfuric acid</u> and heat until dense white fumes are evolved. Cool, add 2.5 mL of <u>nitric acid</u> and heat until fumes are again evolved. Repeat the procedure with a further 2.5 mL of <u>nitric acid</u>, cool, add 50 mL of <u>water</u>, boil the solution until the volume has been reduced to about 25 mL and cool. Transfer to a separating funnel using <u>water</u>, dilute to about 50 mL with <u>water</u> and add 50 mL of 0.5 m <u>sulfuric acid</u>. Add 100 mL of <u>water</u>, 2 g of <u>hydroxylamine hydrochloride</u>, 1 mL of 0.05 m <u>disodium edetate</u>, 1 mL of <u>glacial acetic acid</u> and 5 mL of <u>dichloromethane</u>, shake, allow to separate and discard the dichloromethane layer. Titrate the aqueous layer with a 0.0008% w/v solution of <u>dithizone</u> in <u>dichloromethane</u>, shaking vigorously after each addition, allowing the layers to separate and discarding the dichloromethane layer, until the dichloromethane layer remains green. Repeat the operation using a solution prepared by diluting 1 mL of <u>mercury</u> <u>standard solution (5 ppm Hg)</u> to 100 mL with 0.5 m <u>sulfuric acid</u> and beginning at the words 'Add 100 mL of <u>water</u>...'. The volume of the dithizone solution required by the substance being examined does not exceed that required by the mercury standard solution.

Related substances

Carry out the method for liquid chromatography, Appendix III D, using the following solutions.

- (1) Dissolve 50 mg of the substance being examined in 20 mL of <u>tetrahydrofuran</u> and dilute to 100 mL with the mobile phase.
- (2) Dilute 1 volume of solution (1) to 50 volumes with the mobile phase.
- (3) Dissolve 50 mg of <u>dantron impurity standard BPCRS</u> in 20 mL of <u>tetrahydrofuran</u> and dilute to 100 mL with the mobile phase.

CHROMATOGRAPHIC CONDITIONS

- (a) Use a stainless steel column (25 cm x 4.6 mm) packed with <u>octadecylsilyl silica gel for chromatography</u> (5 μm) (Nucleosil C18 is suitable).
- (b) Use an isocratic system using the mobile phase described below.
- (c) Use a flow rate of 1 mL per minute.
- (d) Use an ambient column temperature.
- (e) Use a detection wavelength of 254 nm.
- (f) Inject 20 μL of each solution.
- (g) Allow the chromatography to proceed for 1.5 times the retention time of the principal peak.

MOBILE PHASE

A mixture of 2.5 volumes of *glacial acetic acid*, 40 volumes of *tetrahydrofuran* and 60 volumes of *water*.

SYSTEM SUITABILITY

The test is not valid unless, in the chromatogram obtained with solution (3):

- a peak due to 1-hydroxyanthraquinone appears immediately before the principal peak, as indicated in the reference chromatogram supplied with <u>dantron impurity standard BPCRS</u>;
- the height of the trough separating the two peaks is not greater than one third of the height of the peak due to 1-hydroxyanthraquinone.

LIMITS

In the chromatogram obtained with solution (1):

- the area of any peak corresponding to 1-hydroxyanthraquinone is not greater than 2.5 times the area of the principal peak in the chromatogram obtained with solution (2) (3.3% taking into account the correction factor of the impurity);
- the sum of the areas of any other <u>secondary peaks</u> is not greater than the area of the principal peak in the chromatogram obtained with solution (2) (2%);
- disregard any peak with a retention time less than one third of that of the principal peak.

Loss on drying

When dried to constant weight at 105°, loses not more than 0.5% of its weight. Use 1 g.

ASSAY

Dissolve 0.2 g in 50 mL of <u>anhydrous pyridine</u> and carry out Method II for <u>non-aqueous titration</u>, <u>Appendix VIII A</u>, using 0.1 m <u>tetrabutylammonium hydroxide VS</u> as titrant and determining the end point <u>potentiometrically</u>. Each mL of 0.1m <u>tetrabutylammonium hydroxide VS</u> is equivalent to 24.02 mg of total phenols, calculated as $C_{14}H_8O_4$.